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Contract abstract 
The overall goal of this contract is to provide virtually all individuals with a cervical level 

spinal cord injury, regardless of injury level and extent, with the opportunity to gain additional 
useful function through the use of FNS and complementary surgical techniques. Specifically, we 
will expand our applications to include individuals with high tetraplegia (C1-C4), low tetraplegia 
(C7), and incomplete injuries. We will also extend and enhance the performance provided to the 
existing C5-C6 group by using improved electrode technology for some muscles and by 
combining several upper extremity functions into a single neuroprosthesis. The new technologies 
that we will develop and implement in this proposal are: the use of nerve cuffs for complete 
activation in high tetraplegia, the use of current steering in nerve cuffs, imaging-based 
assessment of maximum muscle forces, denervation, and volume activated by electrodes, 
multiple degree-of-freedom control, the use of dual implants, new neurotization surgeries for the 
reversal of denervation, new muscle transfer surgeries for high tetraplegia, and an improved 
forward dynamic model of the shoulder and elbow.  During this contract period, all proposed 
neuroprostheses will come to fruition as clinically deployed and fully evaluated demonstrations.  
 
 
Summary of activities during this reporting period 
  
The following activities are described in this report: 

• Intraoperative testing of nerve cuff electrodes and implant tools 
• Wireless data acquisition module for use with a neuroprosthesis. 
• Adaptive neural network controller for an upper extremity neuroprosthesis 
• An integrated voluntary muscle and FES controller to restore elbow extension in spinal 

cord injury 
 
 
Intraoperative Testing of Nerve Cuff Electrodes and Implant Tools 
 
Contract sections: 
E.1.a.i.4.3 Nerve Cuff Electrode fabrication and implantation  
 
Introduction 

The purpose of this section of the contract is to fabricate and develop the surgical 
methods to implement nerve cuff electrodes in a Functional Electrical Stimulation system.  The 
final steps prior to clinical implementation of the nerve cuff electrodes include development of a 
tool to facilitate cuff implantation and feasibility testing of both the cuff electrode and the tool.  
These studies are the final preparation for the implantation of four nerve cuff electrodes with 
percutaneous leads in an individual with high tetraplegia.  This quarter, intraoperative testing 
was performed on one additional subject and the final implant tool was manufactured. 
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Figure 1.  Implant tool with nerve cuff electrode 

loaded and unrolled. 

 

Tool update 
A prototype of the implant tool was professionally fabricated by Miltex, Inc. (Figure 1).  

The tip separation was larger than specified, so the tool was bent slightly to correct for this.  
After this modification, the tool was used on a cadaver by a surgeon with no previous experience 
using either the nerve cuff electrode or the implant tool (Figure 2).   

 
Additional testing of this implant tool will be performed intraoperatively during the next quarter.  
We are working with Miltex to order additional tools for this and other projects.  
 
Intraoperative testing update 

One subject was tested this quarter (Table 1).  No motor response was recorded but the 
SSEP threshold stimulation level was in the range of those previously found.  
 

  TABLE I 
SUMMARY OF INTRAOPERATIVE TESTING DATA    

Threshold*** 
Subj# Injury/Condition 

Time 
Post 

Injury Nerve Stim Params 
Stim Pos 

4 Brachial plexus 
avulsion 9 weeks Ant. C5 200 �s, 2.0 mA WC 

Legend:  WC – whole cuff; Stim Position contains a number that refers to the cuff 
rotation around the nerve and a letter that refers to the contact on the cuff. ***Threshold 
values are the lowest recorded value that resulted in a response at the stimulation position 
indicated. 

 
An intraoperative data collection system has been developed to increase the amount of 

data collected in the limited amount of time available.  The new system includes an automated 
recruitment curve measurement procedure, which should obtain recruitment curves in 1-2 
minutes.  This additional data will allow better characterization of the cuff electrodes and 
provide more detailed selectivity information.  This system should be deployed in the next 
quarter. 
 

 
Figure 2.  Implant tool after implant of cuff 

electrode in the neck of a cadaver. 
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Wireless Data Acquisition Module for Use with a Neuroprosthesis 
 
Contract section: E.1.a.v  Sensory feedback of contact and grasp force 
 
Abstract 
 A general wireless data acquisition module (WDAM) is being developed for use with a 
neuroprosthesis. The WDAM is intended to be used with sensors such as the shoulder or wrist 
position transducer, finger-mounted joysticks, or remote on-off switches.  Currently these 
sensors are connected to a controller via cables, which are cosmetically unappealing to the user 
and often get caught on wheelchairs, causing them to be damaged.  Switch-activated transmitters 
mounted on walkers have been used previously in FES applications [1].  Recent advances in 
wireless technology have reduced the complexity and size of the wireless circuitry and have 
increased the likelihood that a small, low power, reliable wireless link could be assembled from 
commercially available components. 
 
Methods 

In the previous two quarters, the success of the prototype wireless data acquisition 
module was demonstrated.  Depending on the data transmission protocol, packets were 
successfully transmitted from 93% to 97% of the time.  Power requirements were in the 10 mW 
range, which was low enough to allow the module to operate off a coin cell battery for up to 74 
hours of continuous use. 

In this quarter, a printed circuit board (PCB) version of the WDAM was designed and 
fabricated.  The PCB version is a small version of the prototype that allows us to test most of the 
components that will be used in the user-wearable WDAM, while still allowing some testing of 
options, such as different types of antennas.  This PCB version may also be used as the master 
wireless module, which collects information from the wireless sensor modules and sends the 
information via a serial connection to an external controller. The PCB version should reduce the 
circuit noise level by replacing the soldered wires of the prototype with the printed circuit board 
traces, which may increase the successful transmission rate.  In addition, the PCB version uses 
surface mount components and a four-layer board that includes a ground plane (just as the user-
wearable version will), thus giving a better indication of how the final design will function.   

The circuit was designed with Eagle PCB Design software (CadSoft Computer, Inc.).  
The transceiver, microcontroller, power conditioning, and analog input conditioning sections of 
the circuit were all placed on a single board.  The board layout files were sent to a PCB 
fabrication company and four boards were made.  The surface mount components were 
assembled at our own facility. 

While waiting for the PCB fabrication, an initial layout of the miniature, user-wearable 
WDAM was done.  The user-wearable WDAM is envisioned to be a stack of three circuit boards 
that are 1 inch squares, producing a 1 inch cube that can be mounted on the hand or arm.  In this 
design, the battery and power conditioning circuitry would go on one board, the transceiver and 
microcontroller circuitry would go on a second board, and the analog input conditioning circuitry 
would go on a third board.  The initial board layout will be revisited once testing of the PCB 
version is completed. 
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Results 
 The circuit layout and board fabrication process worked well, with the resulting PCB 
version of the WDAM working according to design.  The board is shown in Figure 3. 
 

 
Figure 3.   Printed Circuit Board version of Wireless Data Acquisition Module 

  
 Testing of the board began at the end of the quarter.  An initial test indicated that the PCB 
version performed slightly better than the previous, larger prototype version.  Of 1000 data 
packets that were sent, 998 were successfully received and acknowledged, although half of them 
needed to be sent more than once before they were accepted.  More tests are being performed to 
further evaluate this board. 
 The initial layout of the user-wearable WDAM is shown in Figure 4.  Although the 
boards currently are slightly larger than 1 inch square, this size should be able to be reduced by 
optimizing the layout and by utilizing smaller components, which are available but would require 
fabrication by an outside facility with the appropriate equipment. 
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Figure 4.  Initial layout of user-wearable WDAM, consisting of 3 stacked boards. 

 
Next Quarter 
 In the next quarter, the PCB version of the WDAM will be evaluated further.  This will 
include testing of different antenna types.  In addition, faster transceiver modules will be placed 
on the PCB version and evaluated.  The fastest transceiver module has a data rate that is 50 times 
faster than the one currently in use.  Although we do not anticipate needing data transmission 
rates that are that high, the quicker rates will allow the transceiver to spend more time in sleep 
mode, and therefore will reduce the power requirement further. 
 
  
References 
 
[1] Z. Matjacic, M. Munih, T. Bajd, A. Kralj, H. Benko, and P. Obreza, "Wireless control of 
functional electrical stimulation systems," Artif Organs, vol. 21, pp. 197-200, 1997. 
 
  
 
Adaptive Neural Network Controller for an Upper Extremity Neuroprosthesis 
 
Contract Section:  E.2.a.ii.4.1 EMG-based shoulder and elbow controller 
 
Abstract 

The long term goal of this project is to develop an adaptive neural network controller for 
an upper extremity neuroprosthesis targeted for people with C5/C6 Spinal Cord Injury (SCI). 
The challenge is to determine how to simultaneously stimulate different paralyzed muscles based 
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on the EMG activity of muscles under retained voluntary control. The controller will extract the 
movement intention from the recorded EMG signals and generate the appropriate stimulation 
levels to activate the paralyzed muscles. To test the feasibility of this controller, different arm 
movements were recorded from able-bodied subjects. Using a musculoskeletal model of the arm, 
modified to reflect C5/C6 SCI, inverse simulations provided muscle activation patterns 
corresponding to these movements. Activation patterns were used to train a time-delayed neural 
network to predict paralyzed muscle activations from voluntary muscle activations.  
 
Introduction 

Individuals with C5/C6 SCI lose control over a number of muscles in their upper 
extremity. Specifically their hand muscles are paralyzed; there is partial loss of wrist and elbow 
extension; and several shoulder functions are lost, including horizontal flexion and adduction. 
Arm movements are a coordinated action of several muscles acting upon different joints 
resulting in a large workspace and fine positioning control. Paralysis of some these muscles lead 
to a considerable reduction in the reachable workspace. Functional Electrical Stimulation (FES) 
can be used to stimulate paralyzed muscles whose innervations remain intact, restoring function 
in individuals with SCI.  However, determining the timing and intensity required for 
simultaneously stimulating different paralyzed muscles in the arm is still a big challenge. 

The long term goal of this project is to determine which, how and when to stimulate each 
of the available muscles in a coordinated fashion to increase the arm’s workspace and thus 
provide a functional benefit to the paralyzed individual. The proposed approach exploits retained 
voluntary function by extracting the movement intention from the EMG activity of muscles that 
are under voluntary control and using this information to determine the levels of stimulation 
required. Based on this principle, positioning and stability in the limb become a synergistic 
action between the remaining nervous system and the adaptive mechanism of the artificial 
controller. 

Previous work in our lab has shown that an approach of this kind is feasible. Au et al. 
demonstrated that a neural network is capable of predicting shoulder and elbow joint angles 
using EMG signals from selected muscles. Parikh et al. used a musculoskeletal model of the arm 
to obtain the muscle activations required to hold the arm in a certain posture and then used a 
neural network to predict paralyzed muscle activations using voluntary muscle activations as 
inputs. Finally, Giuffrida used a neural network to predict triceps stimulation levels for elbow 
extension using the EMG activity from the biceps muscle as the input.  This work gives strong 
evidence that EMG signals are useful to predict movement intention and generate adequate 
stimulation patterns. 
 The goal of the work presented here was to demonstrate the feasibility of controlling a 
neuroprosthesis using retained voluntary function. The next step is to design a controller to 
simultaneously restore multiple arm functions. It will include the dynamic characteristics of the 
arm by recording and utilizing muscle activation patterns from movements instead of static 
positions. Artificial intelligence and adaptive control techniques are being used to design the 
controller. The data to train it is obtained from simulations generated by a musculoskeletal model 
of the arm. 
 
Methods 
 Experiments to record arm movements in able-bodied subjects were conducted to obtain 
kinematic data. This data was the input to a musculoskeletal model of the shoulder and elbow. 
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Figure 5. Controller design approach using musculoskeletal modeling. 

The model was modified to reflect a C5/C6 SCI individual. After running inverse dynamic 
simulations, the model provided muscle activation patterns corresponding to the movements 
recorded. Muscle activations were divided into voluntary and paralyzed muscles (denervated 
muscles were removed as they cannot be used for stimulation or recording). An artificial neural 
network (ANN) was trained to predict paralyzed activations using the voluntary activations as 
inputs. The next step included running forward simulations to obtain predicted movements and 
used the kinematic errors to drive an adaptive controller that accounted for disturbances in the 
system. Figure 5 summarizes the strategy described here. 

Arm movements from able-bodied subjects were recorded using an Optotrak system 
(Northern Digital Inc.) that consists of three infrared cameras capable of recording the 3D 
positions of light emitting diodes (LEDs) located within the workspace. Sets of LED clusters 
were fixed over the thorax, upper arm and forearm of the subject. The locations of the scapula 
and clavicle were difficult to track dynamically, so a scapular palpator with a fourth cluster of 
LEDs was used to track the position of the scapula during static trials in different positions 
within the workspace [Veeger, et. al. 2003]. This data and the dynamical orientation of the 
humerus were used to recover the orientation of the scapula and the clavicle by regression that 
represents a standard shoulder rhythm [De Groot and Brand, 2001]. Specific bony landmarks 
were recovered during the movements in order to generate coordinate systems and obtain 
orientations for each joint in the shoulder and elbow. The recording and data processing were 
done following the International Shoulder Group recommendations for shoulder and elbow 
recordings [Van der Helm, 1997]. Figure 6 shows the experimental setup.  The movements 
performed included both single joint movements (shoulder abduction/adduction, 
flexion/extension, horizontal flexion/extension, internal/external rotation and elbow 
flexion/extension and pronation/supination), and a set of functional movements comprised of 
activities of daily living (ADL) such as feeding, drinking, combing the hair, etc. Data was 
recorded at 50 Hz. 
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Figure 6.  Experimental Setup 

Inverse dynamic simulations were run 
with the model to obtain muscle activation 
patterns for the recorded movements. 
Simulations were done using a 
musculoskeletal model of the shoulder and 
elbow developed at the Delft University of 
Technology [Van der Helm, 1994]. The 
model was modified to reflect the conditions 
of a C5/C6 SCI subject by decreasing the 
maximum forces that could be generated by 
voluntary muscles with partial paralysis and 
giving half strength to muscles potentially 
capable of being stimulated with an FES 
implant. The mathematical model consisted 
of finite element descriptions of the bones of 
the arm (thorax, clavicle, and scapula, 
humerus, radius and ulna), 28 muscles (some 
of them divided into various independent 
elements), four ligaments and 11 degrees of 
freedom divided in five joints.  

A time-delayed artificial neural network (TDANN) was chosen as the basic architecture 
to predict paralyzed muscle activations (targets) from voluntary muscle activations (inputs). The 
network had two layers formed by neurons with a tangent-sigmoidal activation function for the 
hidden layer and a linear activation function for the output layer. Time-delayed inputs were 
included to be able to capture the spatio-temporal properties of the muscle activations, providing 
information about the dynamics of the system. The performance of all the networks was 
measured as its ability to predict data that was not used during the training (the so called 
generalization ability). This is a highly desirable feature of the controller, because it has to be 
capable of assisting movements in many different conditions and locations, not just in the ones 
used during training. To address this issue, the training was done using a bayesian regularization 
algorithm. This was chosen because it improved the generalization capacity of the network and 
also gave a measure of how many network parameters are being used effectively by the network, 
which is helpful in determining the optimal parameters for the TDANN [Demuth and Beale, 
2002]. Parameters such as the number of hidden neurons or the number of delays have not been 
optimized yet, but for these simulations 5 neurons and 5 time delays were chosen based on 
previous work. The data was split into training, validation and testing data sets. Validation is 
used during the training to monitor the error generated by the data not used for training. When 
this error increases, the TDANN is memorizing the training data set and the network is losing its 
ability to generalize. The testing data set is used to evaluate the performance of the TDANN after 
the training is finished. The goodness of fit of the TDANN was measured as the RMS error 
between the predicted and model generated muscle activations. All TDANNs were trained using 
MATLAB’s Neural Network Toolbox (The Math Works, Inc.). 
 
Results 

Figure 7 shows a typical kinematic data set obtained after processing the movements 
recorded. Each plot corresponds to the orientation of each bone segment in the upper extremity 
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(trunk, clavicle, scapula, humerus and 
elbow). Each angle corresponds to an Euler 
angle rotation assigned to represent the 
orientation of that bone segment according 
to the standard described in [Van der Helm, 
1997]. This data corresponds to one of the 
ADL tasks performed for 15 seconds. 

Once inverse simulations were run, 
muscle activation patterns were obtained for 
all the muscles included in the simulation. A 
subset of muscles was considered to be 
voluntarily controlled (input) muscles and 
another set was considered to be paralyzed 
(target) muscles. Choosing the appropriate 
muscles and number of muscles is ongoing 
work. The set of muscles presented here 
correspond to what are considered candidate 
muscles for recording and stimulating in a 
real application. Figure 8 shows a typical set 
of muscle activations for these two muscle 
sets corresponding to the movement 
recordings shown in Figure 7.  The top plot 
shows the muscle activations for the Upper 
Trapezius, Anterior Deltoid, Infraspinatus 
and short head of the Biceps, chosen as 
inputs for the TDANN and potential sources 
for EMG signal recordings. The bottom plot 
shows the muscle activations for the Triceps 
lateral head, Posterior Deltoid, Serratus 
Anterior and Pectoralis Major, chosen as 
targets for the TDANN and potential 
muscles to be stimulated with an FES 
system. 

Figure 9 shows the predictions of the 
TDANN for each muscle selected as a target. Solid lines show the target muscle activations and 
dotted lines show the TDANN predictions. Notice how the prediction captures the main 
characteristic of the simulated activations. The average RMS error for this data set was 0.0264.  
 
Discussion 
 The goal of this study is the design of a controller capable of using retained voluntary 
function to extract the movement intention and generate the appropriate levels of stimulation for 
paralyzed muscles in people with C5/C6 SCI. After recording movements during experiments 
with able-bodied subjects and obtaining muscle activation patterns from inverse dynamic 
simulations with a musculoskeletal model of the arm, an artificial neural network was 
successfully trained to predict paralyzed muscle activations using voluntary muscle activations 
as inputs. 

Figure 8. Muscle Activations for TDANN training 

Figure 7.  Kinematic data obtained from the movements 
recorded. 
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 These preliminary findings 
demonstrated that a TDANN is an 
acceptable open-loop block for the proposed 
controller. It was capable of predicting 
muscle activations with a good accuracy. 
EMG signals are representative of muscle 
activations levels; therefore, this approach 
can be implemented in humans by using 
signals directly recorded from voluntarily 
controlled muscles. Errors are anticipated 
using an open loop strategy, as it does not 
account for changes in the arm properties 
during different activities and conditions 
(e.g. fatigue). An adaptive controller that 
accounts for these disturbances is proposed 
as a feedback block for the controller. 
Present work is focused on evaluating the 
quality of the prediction and using a 
feedback error signal to drive the adaptive block. For the work presented here, this will be done 
by performing forward simulations and using the error between the predicted and the recorded 
kinematics to drive this block. In a human implementation, sensors that register the arm position 
or some other means to measure the quality of the movement will be required. 
 Incorporating retained voluntary control mechanisms exploits the immense adaptive 
ability of the human nervous system. The hypothesis of this work is that intact portions of the 
nervous system can re-adapt to the use of the neuroprosthesis and learn to interact with it. The 
proposed controller will successfully interact with the remaining motor function in a continuous 
adaptation process, creating a synergistic relation between the nervous system and the 
neuroprosthesis that will restore function in a natural manner.  
 
Next Quarter 

In the next set of inverse dynamic simulations, the optimization criteria will be varied to 
reflect different nervous system motor control strategies. Then, using the forward dynamic 
musculoskeletal model developed as part of this contract (section E.1.a.ii..4.3), forward 
simulations will be performed on the activation patterns predicted by the neural network. The 
resulting movements will be compared to the experimental movements and the kinematic errors 
will be used to design an adaptive strategy. 
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Figure 9.  TDANN predictions. 
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An Integrated Voluntary Muscle and FES Controller to Restore Elbow 
Extension in Spinal Cord Injury 
 
Contract section:  E.2.a.ii.4.1 EMG-based shoulder and elbow controller 
 
Introduction 

Individuals with a C5/C6 SCI have paralyzed elbow extensors, yet retain weak to strong 
voluntary control of elbow flexion and some shoulder movements.  They lack elbow extension, 
which is critical during activities of daily living.  Restoring elbow extension should improve 
quality of life, increase societal participation, and lead to greater independence.  Our previous 
methods to restore elbow extension included constant level FES and reciprocal control. The 
objective of this research was to develop and assess a synergistic controller using voluntary 
elbow flexor and shoulder EMG to control stimulated elbow extension.  The control system 
utilized natural synergies, integrating remaining voluntary control with triceps FES.  The subject 
should simply attempt to move their hand to a location or apply an endpoint force and the 
controller should apply an appropriate level of triceps stimulation (Figure 10).  We hypothesized 
that EMG from remaining voluntarily controlled upper extremity muscles could be used to train 
a neural network controller to output an appropriate level of triceps stimulation.  Additionally, 
once trained the synergistic network controller should provide functional benefits compared to 
previous control methods. 
 
Methodology 
 
A. Overview 

Four subjects with complete C5/C6 spinal cord injuries participated. All were previously 
implanted with an FES hand grasp system including an electrode implanted in the paralyzed 
triceps. A few to several proximal arm muscles were under voluntary control including elbow 
flexor and shoulder muscles. 
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Figure 10.  The controller should let a SCI subject move 

their arm or apply an endpoint force simply by 
attempting to do so. 

The controller should allow 
subjects to generate and control endpoint 
force vectors unachievable without triceps 
stimulation. Achieving forces outside their 
voluntary range requires triceps 
stimulation. Additionally, once trained, the 
network will operate during triceps 
stimulation. These requirements created a 
catch-22. An ANN that needed training to 
output an appropriate level of triceps 
stimulation needed to be trained with 
EMG collected during the appropriate 
level of triceps stimulation. Therefore, a 
reasonable stimulation level estimate for 
each goal vector to be attempted during data collection was needed. 
 
B. Triceps Stimulation Level Estimates 

A biomechanical model predicted elbow extension moments required by triceps for a 
specific subject and goal isometric endpoint force vector that the subject would encounter during 
data collection. We tailored the model to give us subject-specific outputs based on their 
remaining voluntary muscle set.  A value of 1 indicated a normal, voluntarily controlled muscle 
while 0 represented a completely paralyzed muscle.  Weakened muscles were assigned 
intermediate values depending upon their manual muscle test scores. By defining triceps as near 
normal, we obtained the triceps elbow extension moment needed to achieve the desired endpoint 
force.   

Elbow moments were converted to stimulation levels by experimentally measuring elbow 
moment as a function of stimulus level (recruitment curve) using an elbow moment transducer.  
The stimulation pulse width was increased from 0 �s to 200 �s in steps of 20 �s.  A polynomial 
was fit to scatter plots of elbow extension moment versus stimulation pulse width. The elbow 
extension moments predicted by the model were then fit to the recruitment curve to estimate 
required triceps stimulation.   

   
C.  Data Collection and Signal Processing 
 Surface EMG was collected from a subset of C5/C6 SCI subjects’ voluntarily controlled 
muscles while they attempted to match goal isometric endpoint force vectors at a high, mid, and 
low endpoint location.  EMG was recorded from upper, middle, and lower trapezius (UT, MT, 
LT), anterior, middle, posterior deltoid (AD, MD, PD), biceps (BI), and brachioradialis (BR).  
 Subjects donned a small cast to stabilize their wrist joint.  A visual 3-D display provided 
force magnitude and direction feedback.  Subjects produced discrete goal force vectors in 10 N 
increments along each axis (Figure 10).  Stimulation was delivered to the triceps at 20 mA, 12 
Hz, with a variable pulse width based on the model predictions for the particular goal endpoint 
force.  EMG was sampled at 2500 Hz. Blanking amplifiers removed stimulus artifact. Software 
calculated the RMS value of the EMG segment between each stimulating pulse, normalized it, 
and filtered it with an adaptive, step-size filter.   
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D. Neural Network Training and Verification 
The EMG signals (inputs) and triceps stimulation levels (outputs) used during data 

collection were used to train ANN’s.  MATLAB was used to train a static two-layer structure 
using one hidden layer with five neurons and an output layer with “tansig” transfer functions at 
each hidden layer node.  Inputs included the voluntary EMG command signals, and the output 
was the triceps stimulation level used to obtain the goal force vector.  We trained the ANN 
structure using every possible combination of input muscle sets (i.e. 255 combinations for 8 
muscle inputs).   

The best set of muscles for a particular subject controller was selected on the basis of 1) 
reducing the mean squared error (MSE), 2) minimizing the number of required inputs, and 3) 
operating as predicted by the biomechanical model. First, we verified an acceptable MSE each 
time a network was trained, both with the training set and with the generalization set. Muscle sets 
were then selected that minimized the number of required inputs.  Next, we qualitatively 
evaluated whether the trained network controller operated as predicted by the biomechanical 
model. The discrete time EMG data recorded during tracking of isometric forces along an axis 
during data collection were used to simulate the trained network operating in real-time.  Using 
those EMG inputs to the trained ANN, we calculated and filtered the controller output (triceps 
stimulation). The plots of recorded subject endpoint force and simulated controller stimulation 
output were qualitatively examined to determine if stimulation properly increased or decreased in 
response to an increase in force in a particular direction (Figure 11, left). 

Post-experimentally, the force-stimulation relationship was also examined quantitatively 
by comparing the relationship predicted by the model to that produced by the trained network. 
Scatter plots of force versus stimulation were created from the controller simulation plots 
described above and a polynomial was fit to the scatter points (Figure 11, right).  A polynomial 
was also fit to the force versus stimulation data points predicted by the biomechanical model for 
the same endpoint location and force axis.  The RMS error was computed between the two fitted 
curves to quantify how well the trained network controller learned the relationship predicted by 
the model. 

 
E. Real-Time Functional Evaluations 

One subject was evaluated for the range of forces they could generate using different 
control methods. The subject generated maximum forces using three-dimensional visual 
feedback in each of six randomized directions (Figure 10). Control methods included synergistic 
control, constant stimulation (200 �s pulse width), and no stimulation (0 �s pulse width).  During 
synergistic control, the stimulation pulse width was a function of the subject’s trained ANN 
controller.  A total of nine trials were completed at each endpoint location: three using constant 
stimulation, three using no stimulation, and three using synergistic control.   

The same subject tracked discrete goal forces within his maximum force range at location 
“mid”.  One discrete force tracking trial consisted of tracking discrete and slowly ramping 
isometric force vectors along a single axis.  The subject completed twelve discrete isometric 
force tracking trials.  Four trials were completed over each axis, two using constant stimulation 
(200 �s pulse width) and two using the synergistic controller. The average stimulation pulse 
width output by the synergistic controller over discrete force intervals along an axis was 
calculated.  

Finally, the same subject was evaluated for functional overhead reach. The task goal was 
to begin with the hand placed in the subject’s lap, obtain a mug on an overhead shelf, bring it 
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Figure 11. Left column figures are continuous time plots of the force a subject generated along the 
tracking axis and the stimulation output of the trained network controller using the corresponding 
EMG from that trial. Right column figures are the data from the corresponding left column figure as 
scatter plots and a curve fit to endpoint force versus stimulation.  Additionally, a curve was fit to the 
endpoint force versus stimulation data predicted by the biomechanical model.   

down to his lap, set the mug back on the shelf, and return his hand to his lap.  A total of fifteen 
trials were completed: five constant stimulation, five no stimulation, and five synergistic 
controller trials.  The time it took to complete a trial as well as a pass/fail assessment of the trial 
was recorded.  A successful trial was recorded when the subject successfully completed all 
phases of the task. 

 
 
Results 
 
A. Muscle Selection and ANN Training Verification 

ANN’s were successfully trained to control triceps stimulation using EMG inputs from 
proximal arm muscles for all four C5/C6 SCI subjects.  An important part of this research was 
selecting which muscles should be used as inputs to a particular ANN controller. Based on three 
criteria, only one muscle set out of 255 possible muscle combinations was selected as suitable 
controller inputs for each subject and/or endpoint location (Table 2).  First, trained controllers 
were eliminated that did not achieve an acceptable MSE.  Next, remaining muscle sets were 
selected that minimized the number of inputs.  Thirdly, those controllers were simulated with 
collected EMG’s and the stimulation output was qualitatively compared to the stimulation vs. 
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Table 2. Each subject had a particular muscle set used for a particular controller.  *One neural network was 
successfully trained with data from all locations using one muscle set.  

force relationships produced by the biomechanical model.  The muscle set was selected that 
qualitatively best fit model results for all force directions. 

For all subjects, increasing the number of EMG inputs reduced the MSE when training or 
generalization sets were applied to the trained network.  Many different muscle sets produced 
acceptable MSE values.  The next criterion was to select muscle sets with the fewest number of 
muscle inputs. Trained controllers for each subject that passed the first two criteria were then 
simulated offline.  This qualitative evaluation revealed if a trained network properly learned the 
model predicted relationship between endpoint force and triceps stimulation. Figure 11 illustrates 
controller simulations using muscle set [UT, PD, BI] for subject 3 at location “mid”.  As 
predicted by the biomechanical model, stimulation increased as force increased in the –x, +y, and 
-z directions and turned off in opposite directions.  A single muscle input set was selected for 
each subject and/or endpoint location that best fit the model relationship predictions.  Selected 
muscle input sets for all subjects and endpoint locations correctly increased or decreased 
stimulation in 90% (54/60) of force directions. 

Post-experimentally, a quantitative analysis computed the RMS error between the model 
predicted force-stimulation curve fit and the curve fit to the relationship produced by the trained 
controller (Figure 11). For all subjects and endpoint locations, less than 20% error was observed 
for 66% (39/59) of force directions.  
 
B. Real-Time Functional Evaluations 

 In general, for endpoint force directions predicted to require triceps stimulation, the 
synergistic controller produced larger forces compared to no stimulation.  For other directions, 
where stimulation would interfere with force production, synergistic control produced larger 
forces compared to constant FES.  The full range of endpoint force vectors produced by 
synergistic control was significantly larger (p = 0.0006) than either constant or no stimulation. 

The subject could maintain intermediate forces with tracking errors that were not 
significantly different from those achieved with constant stimulation (p=0.5956).  A gradient of 
stimulation was achieved at intermediate endpoint force values (Figure 12).  As predicted by the 
model used to develop the synergistic controller, the average triceps stimulation pulse width 
increased as the subject generated endpoint forces in the – x, +y, and –z directions.  The subject 
tracked isometric force vectors equally well with each control method, but used 35, 20, and 36% 
less stimulation over the x, y, and z-axes respectively with synergistic control compared to 
constant stimulation. 

The synergistic controller integrated remaining voluntary function with triceps 
stimulation during overhead reach (Figure 13).  Stimulation increased as the subject’s hand 
approached the mug near when active elbow extension was required. The stimulation decreased 
as he brought the mug back to his lap.  The subject successfully completed all overhead reach 
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Figure 12.  The average stimulation pulse width when the subject’s endpoint force was 
between discrete force ranges is illustrated.   Vertical bars illustrate the maximum 
force the subject generated during tracking. 

 
Figure 13.  An overhead reach task was completed using the synergistic controller.  Shown are six 

frames of video from a trial.  The white trace on the computer monitor illustrates triceps 
stimulation.  The time and stimulation pulse width are shown. 

trials using either constant stimulation or the synergistic controller, but failed to complete any 
trial using no stimulation.  However, the subject took significantly longer to complete trials using 
the synergistic controller compared to constant stimulation (24.6 vs. 12.2s).  
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Discussion / Future Work 
A set of 3 or 4 muscles, selected for each subject, provided sufficient information to a 

neural network controller that it produced an acceptable error and effectively learned the 
relationships between endpoint force and required triceps stimulation as predicted by a 
biomechanical model. The model derived stimulation estimates enabled us to solve the problem 
of knowing how much to stimulate triceps while the subjects activated their remaining muscles 
during the training period. The synergistic controller showed benefits compared to previous 
methods for FES controlled elbow extension.  It increased the range of forces a subject could 
generate. Compared to constant stimulation, synergistic control only turned stimulation on when 
a force was generated in a direction that required elbow extension.  Additionally, while only 
trained under static conditions, synergistic control provided benefits during a dynamic overhead 
reach task.  

While synergistic control showed good initial results, several issues may be explored 
before implementation in a practical take home system.  First, we need to determine whether a 
single network controller can be trained to operate effectively over all arm geometries and 
endpoint locations in a subject’s workspace.  A related issue is the number and selection of 
muscle inputs required for each controller.  It would be useful if we could minimize and easily 
select which muscles should be implanted with chronic EMG electrodes before surgery. A larger 
study that included multiple subjects with similar remaining voluntary muscle sets may be able 
to determine muscle inputs that work best for specific subsets of the C5/C6 SCI population.   

In this initial feasibility study, the synergistic controller was trained under static 
conditions. However, in many real world applications, the controller will operate under dynamic 
conditions.  The lone exception to static testing in our study was overhead reach.  While the 
subject could only complete this task with active elbow extension provided by synergistic control 
or constant stimulation, the task took twice as long using synergistic control.  The increase may 
be due to the fact that the statically trained controller output is not stable enough under dynamic 
conditions.  Therefore, the initial synergistic controller may be improved by adding a dynamic 
network structure and dynamic training data.   

Finally, continued development of synergistic algorithms that integrate remaining 
voluntary control with upper extremity neuroprosthetics should not only focus on elbow 
extension in SCI, but also on restoring shoulder, forearm, and hand function.  Adding more 
degrees of freedom to the SCI upper extremity with FES of paralyzed muscles should increase 
functionality. 
 


